Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2509, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509075

RESUMO

The hindlimb and external genitalia of present-day tetrapods are thought to derive from an ancestral common primordium that evolved to generate a wide diversity of structures adapted for efficient locomotion and mating in the ecological niche occupied by the species. We show that despite long evolutionary distance from the ancestral condition, the early primordium of the mouse external genitalia preserved the capacity to take hindlimb fates. In the absence of Tgfbr1, the pericloacal mesoderm generates an extra pair of hindlimbs at the expense of the external genitalia. It has been shown that the hindlimb and the genital primordia share many of their key regulatory factors. Tgfbr1 controls the response to those factors by modulating the accessibility status of regulatory elements that control the gene regulatory networks leading to the formation of genital or hindlimb structures. Our work uncovers a remarkable tissue plasticity with potential implications in the evolution of the hindlimb/genital area of tetrapods, and identifies an additional mechanism for Tgfbr1 activity that might also contribute to the control of other physiological or pathological processes.


Assuntos
Desenvolvimento Embrionário , Genitália , Animais , Camundongos , Comunicação Celular , Redes Reguladoras de Genes , Membro Posterior , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo
2.
Nat Methods ; 21(2): 170-181, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37710020

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data.


Assuntos
Lista de Checagem , Editoração , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador , Microscopia
3.
PLoS Biol ; 21(11): e3002290, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983294

RESUMO

It is now established that many viruses that threaten public health establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol and reduces genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.


Assuntos
Vírus da Influenza A , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Vírus da Influenza A/genética , Microtúbulos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37662386

RESUMO

During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak to the tailbud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuro mesodermal-competent cells from the epiblast to the chordo-neural hinge to generate the tail bud. We now show that Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1 the two LPM layers do not converge at the end of the trunk, extending instead as separate layers enclosing the celomic cavity until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. However, this extended LPM, does not exhibit the molecular signatures characteristic of this tissue in the trunk. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior primitive streak fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.

6.
ArXiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36824427

RESUMO

Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.

7.
Front Cell Dev Biol ; 10: 989615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699016

RESUMO

During vertebrate development, symmetry breaking occurs in the left-right organizer (LRO). The transfer of asymmetric molecular information to the lateral plate mesoderm is essential for the precise patterning of asymmetric internal organs, such as the heart. However, at the same developmental time, it is crucial to maintain symmetry at the somite level for correct musculature and vertebrae specification. We demonstrate how left-right signals affect the behavior of zebrafish somite cell precursors by using live imaging and fate mapping studies in dand5 homozygous mutants compared to wildtype embryos. We describe a population of cells in the vicinity of the LRO, named Non-KV Sox17:GFP+ Tailbud Cells (NKSTCs), which migrate anteriorly and contribute to future somites. We show that NKSTCs originate in a cluster of cells aligned with the midline, posterior to the LRO, and leave that cluster in a left-right alternating manner, primarily from the left side. Fate mapping revealed that more NKSTCs integrated somites on the left side of the embryo. We then abolished the asymmetric cues from the LRO using dand5-/- mutant embryos and verified that NKSTCs no longer displayed asymmetric patterns. Cell exit from the posterior cluster became bilaterally synchronous in dand5-/- mutants. Our study revealed a new link between somite specification and Dand5 function. The gene dand5 is well known as the first asymmetric gene involved in vertebrate LR development. This study revealed a new link for Dand5 as a player in cell exit from the maturation zone into the presomitic mesoderm, affecting the expression patterns of myogenic factors and tail size.

8.
F1000Res ; 10: 334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164115

RESUMO

NEUBIAS, the European Network of Bioimage Analysts, was created in 2016 with the goal of improving the communication and the knowledge transfer among the various stakeholders involved in the acquisition, processing and analysis of biological image data, and to promote the establishment and recognition of the profession of Bioimage Analyst. One of the most successful initiatives of the NEUBIAS programme was its series of 15 training schools, which trained over 400 new Bioimage Analysts, coming from over 40 countries. Here we outline the rationale behind the innovative three-level program of the schools, the curriculum, the trainer recruitment and turnover strategy, the outcomes for the community and the career path of analysts, including some success stories. We discuss the future of the materials created during this programme and some of the new initiatives emanating from the community of NEUBIAS-trained analysts, such as the NEUBIAS Academy. Overall, we elaborate on how this training programme played a key role in collectively leveraging Bioimaging and Life Science research by bringing the latest innovations into structured, frequent and intensive training activities, and on why we believe this should become a model to further develop in Life Sciences.


Assuntos
Disciplinas das Ciências Biológicas , Instituições Acadêmicas , Currículo
10.
J Vis Exp ; (168)2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33720141

RESUMO

Somitogenesis is a hallmark of vertebrate embryonic development. For years, researchers have been studying this process in a variety of organisms using a wide range of techniques encompassing ex vivo and in vitro approaches. However, most studies still rely on the analysis of two-dimensional (2D) imaging data, which limits proper evaluation of a developmental process like axial extension and somitogenesis involving highly dynamic interactions in a complex 3D space. Here we describe techniques that allow mouse live imaging acquisition, dataset processing, visualization and analysis in 3D and 4D to study the cells (e.g., neuromesodermal progenitors) involved in these developmental processes. We also provide a step-by-step protocol for optical projection tomography and whole-mount immunofluorescence microscopy in mouse embryos (from sample preparation to image acquisition) and show a pipeline that we developed to process and visualize 3D image data. We extend the use of some of these techniques and highlight specific features of different available software (e.g., Fiji/ImageJ, Drishti, Amira and Imaris) that can be used to improve our current understanding of axial extension and somite formation (e.g., 3D reconstructions). Altogether, the techniques here described emphasize the importance of 3D data visualization and analysis in developmental biology, and might help other researchers to better address 3D and 4D image data in the context of vertebrate axial extension and segmentation. Finally, the work also employs novel tools to facilitate teaching vertebrate embryonic development.


Assuntos
Padronização Corporal , Imageamento Tridimensional/métodos , Vertebrados/anatomia & histologia , Vertebrados/embriologia , Animais , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/diagnóstico por imagem , Desenvolvimento Embrionário , Imunofluorescência , Camundongos Knockout , Fatores de Transcrição da Família Snail/deficiência , Fatores de Transcrição da Família Snail/metabolismo , Software , Fatores de Tempo , Fixação de Tecidos , Tomografia Óptica
11.
Front Cell Dev Biol ; 8: 605274, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330505

RESUMO

During early embryogenesis, the hemogenic endothelium of the developing dorsal aorta is the main source of definitive hematopoietic stem cells (HSCs), which will generate all blood cell lineages of the adult organism. The hemogenic endothelial cells (HECs) of the dorsal aorta are known to arise from the splanchnic lateral plate mesoderm. However, the specific cell lineages and developmental paths that give rise to aortic HECs are still unclear. Over the past half a century, the scientific debate on the origin of aortic HECs and HSCs has largely focused on two potential and apparently alternative birthplaces, the extraembryonic yolk sac blood islands and the intraembryonic splanchnic mesoderm. However, as we argue, both yolk sac blood islands and aortic HECs may have a common hemangioblastic origin. Further insight into aortic HEC development is being gained from fate-mapping studies that address the identity of progenitor cell lineages, rather than their physical location within the developing embryo. In this perspective article, we discuss the current knowledge on the origin of aortic HECs with a particular focus on the evidence provided by studies in the avian embryo, a model that pioneered the field of developmental hematopoiesis.

12.
Elife ; 92020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32597756

RESUMO

Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.


Assuntos
Padronização Corporal , Transição Epitelial-Mesenquimal , Mesoderma/embriologia , Camundongos/embriologia , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Fatores de Transcrição da Família Snail/genética , Animais , Embrião de Mamíferos/embriologia , Camundongos/genética , Camundongos Transgênicos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Cauda/embriologia
13.
Sci Rep ; 8(1): 12267, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115956

RESUMO

Flatfish metamorphosis is a unique post-embryonic developmental event in which thyroid hormones (THs) drive the development of symmetric pelagic larva into asymmetric benthic juveniles. One of the eyes migrates to join the other eye on the opposite side of the head. Developmental mechanisms at the basis of the acquisition of flatfish anatomical asymmetry remain an open question. Here we demonstrate that an TH responsive asymmetric centre, determined by deiodinase 2 expression, ventrally juxtaposed to the migrating eye in sole (Solea senegalensis) correlates with asymmetric cranial ossification that in turn drives eye migration. Besides skin pigmentation that is asymmetric between dorsal and ventral sides, only the most anterior head region delimited by the eyes becomes asymmetric whereas the remainder of the head and organs therein stay symmetric. Sub-ocular ossification is common to all flatfish analysed to date, so we propose that this newly discovered mechanism is universal and is associated with eye migration in all flatfish.


Assuntos
Olho/crescimento & desenvolvimento , Linguados/anatomia & histologia , Linguados/crescimento & desenvolvimento , Metamorfose Biológica , Hormônios Tireóideos/metabolismo , Animais , Olho/anatomia & histologia , Linguados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Crânio/anatomia & histologia
14.
Arch Toxicol ; 92(1): 411-423, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28932931

RESUMO

Prediction and management of drug-induced renal injury (DIRI) rely on the knowledge of the mechanisms of drug insult and on the availability of appropriate animal models to explore it. Zebrafish (Danio rerio) offers unique advantages for assessing DIRI because the larval pronephric kidney has a high homology with its human counterpart and it is fully mature at 3.5 days post-fertilization. Herein, we aimed to evaluate the usefulness of zebrafish larvae as a model of renal tubular toxicity through a comprehensive analysis of the renal alterations induced by the lethal concentrations for 10% of the larvae for gentamicin, paracetamol and tenofovir. We evaluated drug metabolic profile by mass spectrometry, renal function with the inulin clearance assay, the 3D morphology of the proximal convoluted tubule by two-photon microscopy and the ultrastructure of proximal convoluted tubule mitochondria by transmission electron microscopy. Paracetamol was metabolized by conjugation and oxidation with further detoxification with glutathione. Renal clearance was reduced with gentamicin and paracetamol. Proximal tubules were enlarged with paracetamol and tenofovir. All drugs induced mitochondrial alterations including dysmorphic shapes ("donuts", "pancakes" and "rods"), mitochondrial swelling, cristae disruption and/or loss of matrix granules. These results are in agreement with the tubular effects of gentamicin, paracetamol and tenofovir in man and demonstrate that zebrafish larvae might be a good model to assess functional and structural damage associated with DIRI.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Túbulos Renais Proximais/efeitos dos fármacos , Testes de Toxicidade/métodos , Peixe-Zebra , Acetaminofen/efeitos adversos , Acetaminofen/farmacocinética , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/patologia , Animais , Animais Geneticamente Modificados , Gentamicinas/efeitos adversos , Gentamicinas/farmacocinética , Inativação Metabólica , Testes de Função Renal , Túbulos Renais Proximais/patologia , Larva , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacocinética , Tenofovir/efeitos adversos , Tenofovir/farmacocinética , Peixe-Zebra/genética
15.
Biochem Cell Biol ; 95(6): 679-685, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28817784

RESUMO

Tumor angiogenesis is required for tumor development and growth, and is regulated by several factors including ROS. H2O2 is a ROS with an important role in cell signaling, but how H2O2 regulates tumor angiogenesis is still poorly understood. We have xenografted tumor cells with altered levels of H2O2 by catalase overexpression into zebrafish embryos to study redox-induced tumor neovascularization. We found that vascular recruitment and invasion were impaired if catalase was overexpressed. In addition, the overexpression of catalase altered the transcriptional levels of several angiogenesis-related factors in tumor cells, including TIMP-3 and THBS1. These two anti-angiogenic factors were found to be H2O2-regulated by two different mechanisms: TIMP-3 expression in a cell-autonomous manner; and, THBS1 expression that was non-cell-autonomous. Our work shows that intracellular H2O2 regulates the expression of angiogenic factors and the formation of a vessel network. Understanding the molecular mechanisms that govern this multifunctional effect of H2O2 on tumor angiogenesis could be important for the development of more efficient anti-angiogenic therapies.


Assuntos
Indutores da Angiogênese/metabolismo , Catalase/metabolismo , Peróxido de Hidrogênio/farmacologia , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Animais , Catalase/genética , Linhagem Celular Tumoral , Humanos , Camundongos , Neoplasias/patologia , Neovascularização Patológica/patologia , Peixe-Zebra/embriologia
16.
Cytometry A ; 91(2): 144-151, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28075531

RESUMO

Flow cytometry is the tool of choice for high-speed acquisition and analysis of large cell populations, with the tradeoff of lacking intracellular spatial information. Although in the last decades flow cytometry systems that can actually acquire two-dimensional spatial information were developed, some of the limitations remained though, namely constrains related to sample size and lack of depth or dynamic information. The combination of fluidics and light-sheet illumination has the potential to address these limitations. By having cells travelling with the flowing sheath one can, in a controlled fashion, force them at constant speed through the light-sheet enabling the synchronized acquisition of several optical sections, that is, three-dimensional imaging. This approach has already been used for imaging cellular spheroids, plankton, and zebra-fish embryos. In this review, we discuss the known solutions and standing challenges of performing three-dimensional high-throughput imaging of multicellular biological models using fluidics, while retaining cell and organelle-level resolution. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Animais , Ensaios de Triagem em Larga Escala , Plâncton/ultraestrutura , Esferoides Celulares/ultraestrutura , Peixe-Zebra
17.
Data Brief ; 7: 1497-505, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27182547

RESUMO

Sea urchins have specialized adhesive organs called tube feet, which mediate strong but reversible adhesion. Tube feet are composed by a disc, producing adhesive and de-adhesive secretions for substratum attachment, and a stem for movement. After detachment the secreted adhesive remains bound to the substratum as a footprint. Recently, a label-free quantitative proteomic approach coupled with the latest mass-spectrometry technology was used to analyze the differential proteome of Paracentrotus lividus adhesive organ, comparing protein expression levels in the tube feet adhesive part (the disc) versus the non-adhesive part (the stem), and also to profile the proteome of the secreted adhesive (glue). This data article contains complementary figures and results related to the research article "Deciphering the molecular mechanisms underlying sea urchin reversible adhesion: a quantitative proteomics approach" (Lebesgue et al., 2016) [1]. Here we provide a dataset of 1384 non-redundant proteins, their fragmented peptides and expression levels, resultant from the analysis of the tube feet differential proteome. Of these, 163 highly over-expressed tube feet disc proteins (>3-fold), likely representing the most relevant proteins for sea urchin reversible adhesion, were further annotated in order to determine the potential functions. In addition, we provide a dataset of 611 non-redundant proteins identified in the secreted adhesive proteome, as well as their functional annotation and grouping in 5 major protein groups related with adhesive exocytosis, and microbial protection. This list was further analyzed to identify the most abundant protein groups and pinpoint putative adhesive proteins, such as Nectin, the most abundant adhesive protein in sea urchin glue. The obtained data uncover the key proteins involved in sea urchins reversible adhesion, representing a step forward to the development of new wet-effective bio-inspired adhesives.

18.
J Proteomics ; 138: 61-71, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26926440

RESUMO

UNLABELLED: Marine bioadhesives have unmatched performances in wet environments, being an inspiration for biomedical applications. In sea urchins specialized adhesive organs, tube feet, mediate reversible adhesion, being composed by a disc, producing adhesive and de-adhesive secretions, and a motile stem. After tube foot detachment, the secreted adhesive remains bound to the substratum as a footprint. Sea urchin adhesive is composed by proteins and sugars, but so far only one protein, Nectin, was shown to be over-expressed as a transcript in tube feet discs, suggesting its involvement in sea urchin adhesion. Here we use high-resolution quantitative mass-spectrometry to perform the first study combining the analysis of the differential proteome of an adhesive organ, with the proteome of its secreted adhesive. This strategy allowed us to identify 163 highly over-expressed disc proteins, specifically involved in sea urchin reversible adhesion; to find that 70% of the secreted adhesive components fall within five protein groups, involved in exocytosis and microbial protection; and to provide evidences that Nectin is not only highly expressed in tube feet discs but is an actual component of the adhesive. These results give an unprecedented insight into the molecular mechanisms underlying sea urchin adhesion, and opening new doors to develop wet-reliable, reversible, and ecological biomimetic adhesives. SIGNIFICANCE: Sea urchins attach strongly but in a reversible manner to substratum, being a valuable source of inspiration for industrial and biomedical applications. Yet, the molecular mechanisms governing reversible adhesion are still poorly studied delaying the engineering of biomimetic adhesives. We used the latest mass spectrometry techniques to analyze the differential proteome of an adhesive organ and the proteome of its secreted adhesive, allowing us to uncover the key players in sea urchin reversible adhesion. We demonstrate, that Nectin, a protein previously pointed out as potentially involved in sea urchin adhesion, is not only highly expressed in tube feet discs, but is a genuine component of the secreted adhesive.


Assuntos
Adesivos/metabolismo , Moléculas de Adesão Celular/metabolismo , Paracentrotus/metabolismo , Proteômica , Animais , Nectinas
19.
Mech Dev ; 140: 19-24, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27000637

RESUMO

Batrachoidids, which include midshipman and toadfish are less known among embryologists, but are common in other fields. They are characteristic for their acoustic communication, and develop hearing and sound production while young juveniles. They lay large benthic eggs (>5mm) with a thick chorion and adhesive disk and slow development, which are particularly challenging for studying embryology. Here we took advantage of a classical tissue clearing technique and the OPenT open-source platform for optical tomography imaging, to image a series of embryos and larvae from 3 to 30mm in length, which allowed detailed 3D anatomical reconstructions non-destructively. We documented some of the developmental stages (early and late in development) and the anatomy of the delicate stato-acoustic organs, swimming bladder and associated sonic muscles. Compared to other techniques accessible to developmental biology labs, OPenT provided advantages in terms of image quality, cost of operation and data throughput, allowing identification and quantitative morphometrics of organs in larvae, earlier and with higher accuracy than is possible with other imaging techniques.


Assuntos
Batracoidiformes/anatomia & histologia , Batracoidiformes/crescimento & desenvolvimento , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Animais , Tomografia/métodos
20.
Microbiology (Reading) ; 162(3): 503-512, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26764024

RESUMO

Helicobacter pullorum is an avian enterohepatic species that, more recently, has also been found as a naturally acquired infection in mice and rats, and isolated from patients with gastrointestinal and hepatobiliary diseases. In this work, the interaction between H. pullorum and murine macrophages was examined. Firstly, the impact of nitric oxide, which is an antimicrobial produced by mammalian macrophages, on H. pullorum 6350-92 viability and morphology was studied by colony-forming assays and light microscopy, respectively. Exposure to nitric oxide lowered H. pullorum viability, in a growth-phase-dependent manner, and decreased the mean cell size. However, the number of coccoid forms remained low, contrasting with what has been observed for other Helicobacter species. Confocal microscopy showed that H. pullorum is internalized by murine macrophages, triggering nitric oxide production that promotes phagocytosis and killing of the pathogen. Interaction between H. pullorum and macrophages stimulated secretion of pro-inflammatory cytokines, such as TNF-α, IL-1ß, IL-6 and MIP-2. These results show that H. pullorum is able to infect mammalian murine cells triggering an inflammatory response.


Assuntos
Helicobacter/imunologia , Macrófagos/imunologia , Viabilidade Microbiana/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fagocitose , Animais , Linhagem Celular , Contagem de Colônia Microbiana , Citocinas/metabolismo , Helicobacter/citologia , Helicobacter/efeitos dos fármacos , Camundongos , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...